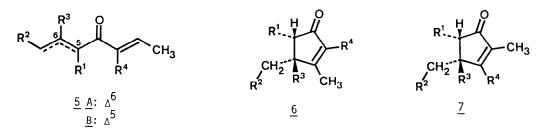
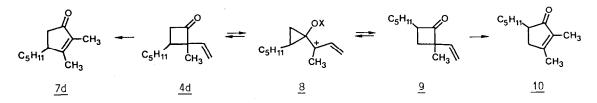

PREPARATION OF 2-VINYLCYCLOBUTANONES AND THEIR CONVERSION TO CYCLOPENTENONES

David A. Jackson, Max Rey and André S. Dreiding

Organisch-Chemisches Institut der Universität Zürich-Irchel Winterthurerstrasse 190, CH-8057 Zürich

<u>Abstract</u>: Methyl- and ethyl-vinylketene <u>3</u> were added to several simple olefins <u>1</u> to afford alkylated 2-vinylcyclobutanones <u>4</u>, which in turn rearranged to cyclopentenones <u>6</u> (via dienones <u>5A,B</u>) or <u>7</u> (via 1,2-acyl migration) under acid catalysis. Evidence is presented for a cyclopropyl-carbinyl intermediate <u>8</u>.


Following our interest¹ (cf. $also^2$) in the reactions of vinylketenes, we have found that methyl- (<u>3A</u>) and ethyl-vinylketene (<u>3B</u>),³ generated in situ from 2-methyl- (<u>2A</u>) and 2-ethylbut--2-enoyl chloride (<u>2B</u>) and triethylamine, can be made to react even with unactivated olefins <u>1</u> (cf.⁴) to give alkylated 2-vinylcyclobutanones <u>4</u> (Table⁵). The conditions, which at least partially suppressed the known⁶ self-condensation of <u>2</u> to 2-pyrones, entailed high temperature (ca. 150[°], mostly requiring a sealed tube) and a six-fold excess of neat olefin (recoverable). This method to prepare <u>4</u> has the advantage (cf. alternative methods⁷) of using readily available starting materials in a one-step procedure; some of the low yields may be improved by using a larger excess of the olefin.


Depending on the substitution pattern (R^1, R^2, R^3) of the olefin <u>1</u>, the [2+2]-cycloadditions with <u>3</u> were found to be highly regioselective (substituent control, leading to <u>4a-d</u>, <u>g</u>) and stereoselective with respect to the olefin (suprafacial participation, leading to <u>4e</u>, <u>f</u>, <u>h</u>). The stereoselectivity due to antarafacial participation of the ketene⁸, i.e. the preferred appearance of its (bulkier) methyl or ethyl group (R₄) in the more hindered position of <u>4</u>, was less pronounced, as mixtures of stereoisomers <u>4A</u> and <u>4B</u> were formed where possible (products <u>4a</u>, <u>d-f</u>, <u>h</u>).

Under mild acid catalysis (procedures i and ii, Table) the 3,3-dialkyl-cyclobutanones $(\underline{4a-c}, \underline{g})$ underwent ring opening to substituted allyl-vinyl-ketones $(\underline{5A})$ and divinyl-ketones $(\underline{5B})$. With higher acid concentration (procedure iii) $\underline{4a-c}, \underline{g}$ were transformed into cyclopentenones $(\underline{6a-c}, \underline{g})$. We assume the $\underline{4} \rightarrow \underline{6}$ transformations to occur by a Nazarov-type cyclisation⁹ of the intermediate dienones $(\underline{5a-c}, \underline{g})$, which was confirmed by the conversion of $\underline{5gA}$ into $\underline{6g}$ (36%) under procedure iii.

The 3-alkyl- (<u>4d</u>) and 3,4-dialkyl-cyclobutanones (<u>4e</u>, <u>f</u>, <u>h</u>) did not yield dienones <u>5</u> or cyclopentenones <u>6</u> by procedures i-iii. They were, however, converted to cyclopentenones (<u>7d-f</u>, <u>h</u>) under more vigorous conditions (procedure v) or under stronger acid catalysis (procedure iv). That these latter conversions proceed by a different mechanism, a 1,2-acyl migration (cf. ¹⁰), may be deduced from the transformation of <u>4h</u> into <u>7h</u> (δ (CH₃) = 1.64 ppm) instead of <u>6h</u> (which should show δ (CH₃) in the range of 1.90-2.05 ppm).

In the rearrangement of the 3-monoalkyl-cyclobutanone $\underline{4d}$ (under procedure iv), the 4-alkyl-cyclopentenone $\underline{7d}$ (51%) was accompanied by the unexpected 5-alkyl-cyclopentenone $\underline{10}$ (11%). This is explainable by the occurrence of a cyclopropyl-carbinyl intermediate like $\underline{8}$, as has been postulated in similar cases.¹¹ We have found the 3-alkyl- ($\underline{4d}$) and the 4-alkyl-cyclobutanone $\underline{9}$ to be mutually interconvertible (ratio 1:4) under mild conditions (0.3 mol/L in CH₂Cl₂ with 1.1 mol equiv. BF₃-etherate), which supports this hypothesis.

		substitu	ients		% yield	pro-	% yield		
				cycloadduct <u>4</u>		cedure ^a	dienones <u>5</u>	cyclopent	tenone ^C
					(ratio <u>A</u> : <u>B</u>)		(ratio <u>A</u> : <u>B</u>) ^b	<u>6</u>	<u>7</u>
	R 1	R ²	r ³	R^4	R ² R ³ R ⁴	R²	R ³ O el 5 R ¹ R ⁴ CH ₃	R ¹ H O CH ₂ R ⁴ R ⁴	R ¹ H CH ₃ CH ₂ R ³ R ⁴
a	Н	- ^C 3 ^H 7	сн _з	СН3	11 (1:1)	i	80 ^d	_	
						ii	73 (5:1) ^d	-	
						iii	11 ^d	65	
<u>b</u>	н	-(CH ₂)	3-	СН _З	79	i	55		
						ii	67 (3.7:1)	-	
		2 0		0		iii	8 (0.5:1)	71	
						i	75	_	
<u>c</u>	Н	-(CH ₂)4-	₄ -	CH3	42	ii	89	-	
	_ ,			ũ		iii	4	66	
<u>d</u>	Н	-c ₄ H ₉	Н	СНЗ	40 (2.3:1)	iv	-		62 ^e
						v	_		76
<u>e</u>	-(CH ₂)2-		Н	сн3	28 (2.3:1)	iv	-		46
<u>_</u>	-(C	^H 2 ⁾ 5 ⁻	Н	снз	60 (3:1)	iv	-	<u> </u>	58 ^f
			³⁻	с ₂ н ₅	67	i	71	-	
<u>g</u>	H	-(CH ₂)				iii	20 (0.5:1)	51	
<u>h</u>	-(C	^H 2 ⁾ 5 ⁻	Н	с ₂ н ₅	52 (5.7:1)	iv	-	-	54 ^f

Table. Products of the cycloadditions 1 + 3 and of their acid catalysed rearrangements, with % isolated yields

^aAcid catalysed rearrangement: The cyclobutanone $\underline{4}$ was allowed to stand with the acid catalyst until no more 4 remained (procedure i-iv at rt. for 0.25-24 h): i) 0.3-0.6 mol/L in CH₂Cl₂ with 0.2 mol equiv. BF_3 -etherate; ii) 0.3-0.6 mol/L in CH_2Cl_2 with 0.2 mol equiv. CH_3SO_3H ; iii) 0.3 mol/L in CH_2Cl_2 with 1.0 mol equiv. CH_3SO_3H ; iv) ca. 1.0 mol/L in neat CH_3SO_3H ; v) 0.7 mol/L in $CDCl_3$ with 1.0 mol equiv. CH_3SO_3H at 60° for 12 days.

^bWhere no ratio is given in this column, only dienone <u>A</u> was found.

^CCyclopentenones <u>6</u> and <u>7</u> are identical when $R^4 = CH_3$ (cases <u>a-f</u>). ^dMixtures of the (E)- and (Z)-isomers at Δ^6 or at Δ^5 .

 $^{\rm e}$ Including 11% of the cyclopentenone <u>10</u>, which was separated.

fIncluding some of the trans-ring juncture isomer and some of the $\Delta^{1(8)}$ -double bond isomer.

Our method to obtain 5, 6 and 7 uses the same building blocks (unsaturated acid derivatives and olefins) as the Friedel-Crafts approach to make linear dienones¹² and cyclopentenones.¹³ Aside from affording vinylcyclobutanones 4 as potentially valuable intermediates, our method has the advantages of a) preventing contact between a strong acid and the starting olefin, thus avoiding double bond migration, and b) permitting in some cases an altogether milder acid catalysis, which could suppress decomposition.

<u>Acknowledgment</u>. We thank the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung and Sandoz AG, Basel, for support of this work.

REFERENCES AND NOTES

- R. Huston, M. Rey & A.S. Dreiding, Helv. Chim. Acta 1982, <u>65</u>, 451; J.M. Berge, M. Rey & A.S. Dreiding, ibid. 1982, <u>65</u>, 2230 and previous papers cited therein.
- G.B. Payne, J. Org. Chem. 1966, <u>31</u>, 718; R.W. Holder, H.S. Freiman & M.F. Stefanchik, J. Org. Chem. 1976, <u>41</u>, 3303; J.D. Wuest, A.M. Madonik & D.C. Gordon, J. Org. Chem. 1977, <u>42</u>, 2111; R.C. Danheiser & H. Sard, J. Org. Chem. 1980, <u>45</u>, 4810; W.S. Trahanovsky, B.W. Surber, M.C. Wilkes & M.M. Preckel, J. Am. Chem. Soc. 1982, <u>104</u>, 6779.
- 3. Similar results with other vinylketenes will be presented in a full report.
- 4. R.L. Danheiser, C. Martinez-Davila & H. Sard, Tetrahedron 1981, 37, 3943.
- 5. All new compounds gave correct elemental analyses and showed spectral properties in agreement with the proposed structures.
- 6. M. Rey, E. Dunkelblum, R. Allain & A.S. Dreiding, Helv. Chim. Acta 1970, 53, 2159.
- 7. B.M. Trost & L.N. Jungheim, J. Am. Chem. Soc. 1980, <u>102</u>, 7910; T. Cohen & J.R. Matz, Tetrahedron Letts. 1981, 2455; T. Cohen, M. Bhupathy & J.R. Matz, J. Am. Chem. Soc. 1983, 105, 520.
- 8. M. Rey, S.M. Roberts, A. Dieffenbacher & A.S. Dreiding, Helv. Chim. Acta 1970, 53, 417.
- 9. C. Santelli-Rouvier & M. Santelli, Synthesis 1983, 429.
- 10. R. Huston, M. Rey & A.S. Dreiding, Helv. Chim. Acta 1982, <u>65</u>, 1563; J.R. Matz & T. Cohen, Tetrahedron Letts. 1981, 2459.
- W.F. Erman, R.S. Treptow, P. Bakuzis & E. Wenkert, J. Am. Chem. Soc. 1971, <u>93</u>, 657;
 T.J. Katz & R. Dessau, J. Am. Chem. Soc. 1963, <u>85</u>, 2172; F. Wagnier, Tetrahedron Letts.
 1974, 1589; K.E. Hine & R.F. Childs, Can. J. Chem. 1976, <u>54</u>, 12.
- M.I. Kanishev, A.A. Schegolev, W.A. Smit, R. Caple & M.J. Kelner, J. Am. Chem. Soc. 1979, <u>101</u>, 5660; B.B. Snider & A.C. Jackson, J. Org. Chem. 1982, <u>47</u>, 5393; J.K. Groves, Chem. Soc. Rev. 1972, 1, 73.
- Review, see⁹; L.A. Paquette, W.E. Fristad, D.S. Dime & T.R. Bailey, J. Org. Chem. 1980, 45, 3017.

(Received in Germany 11 August 1983)